Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Photochem Photobiol Sci ; 20(7): 955-965, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1384775

ABSTRACT

The pandemic created by SARS-CoV-2 has caused a shortage in the supplies of N95 filtering facepiece respirators (FFRs), disposable respirators with at least 95% efficiency to remove non-oily airborne particles, due to increasing cases all over the world. The current article reviewed various possible decontamination methods for FFR reuse including ultraviolet germicidal irradiation (UVGI), hydrogen peroxide vapor (HPV), microwave-generated steam (MGS), hydrogen peroxide gas plasma (HPGP), and 70% or higher ethanol solution. HPV decontamination was effective against bacterial spores (6 log10 reduction of Geobacillus stearothermophilus spores) on FFRs and viruses (> 4 log10 reduction of various types of viruses) on inanimate surfaces, and no degradation of respirator materials and fit has been reported. 70% or higher ethanol decontamination showed high efficacy in inactivation of coronaviruses on inanimate surfaces (> 3.9 log10 reduction) but it was lower on FFRs which filtration efficiency was also decreased. UVGI method had good biocidal efficacy on FFRs (> 3 log10 reduction of H1N1 virus) combined with inexpensive, readily available equipment; however, it was more time-consuming to ensure sufficient reduction in SARS-CoV-2. MGS treatment also provided good viral decontamination on FFRs (> 4 log10 reduction of H1N1 virus) along with less time-intensive process and readily available equipment while inconsistent disinfection on the treated surfaces and deterioration of nose cushion of FFRs were observed. HPGP was a good virucidal system (> 6 log10 reduction of Vesicular stomatitis virus) but filtration efficiency after decontamination was inconsistent. Overall, HPV appeared to be one of the most promising methods based on the high biocidal efficacy on FFRs, preservation of respirator performance after multiple cycles, and no residual chemical toxicity. Nonetheless, equipment cost and time of the HPV process and a suitable operating room need to be considered.


Subject(s)
COVID-19 , Decontamination/methods , N95 Respirators/microbiology , N95 Respirators/virology , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/radiation effects , COVID-19/epidemiology , Disinfection/methods , Ethanol/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Microwaves , Ultraviolet Rays , Viruses/drug effects , Viruses/isolation & purification , Viruses/radiation effects
2.
Am J Otolaryngol ; 42(5): 103017, 2021.
Article in English | MEDLINE | ID: covidwho-1163310

ABSTRACT

PURPOSE: To evaluate the effectiveness and ease of N95 respirator decontamination methods in a clinic setting and to identify the extent of microbial colonization on respirators associated with reuse. METHODS: In a prospective fashion, N95 respirators (n = 15) were randomized to a decontamination process (time, dry heat, or ultraviolet C light [UVC]) in outpatient clinics. Each respirator was re-used up to 5 separate clinic sessions. Swabs on each respirator for SARS-CoV-2, bacteria, and fungi were obtained before clinic, after clinic and post-treatment. Mask integrity was checked after each treatment (n = 68). Statistical analyses were performed to determine factors for positive samples. RESULTS: All three decontamination processes reduced bacteria counts similarly. On multivariate mixed model analysis, there were an additional 8.1 colonies of bacteria (95% CI 5.7 to 10.5; p < 0.01) on the inside compared to the outside surface of the respirators. Treatment resulted in a decrease of bacterial load by 8.6 colonies (95% CI -11.6 to -5.5; p < 0.01). Although no decontamination treatment affected the respirator filtration efficiency, heat treatments were associated with the breakdown of thermoplastic elastomer straps. Contamination with fungal and SARS-CoV-2 viral particles were minimal to non-existent. CONCLUSIONS: Time, heat and UVC all reduced bacterial load on reused N95 respirators. Fungal contamination was minimal. Heat could permanently damage some elastic straps making the respirators nonfunctional. Given its effectiveness against microbes, lack of damage to re-treated respirators and logistical ease, UVC represents an optimal decontamination method for individual N95 respirators when reuse is necessary.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Infectious Disease Transmission, Patient-to-Professional/prevention & control , N95 Respirators/microbiology , SARS-CoV-2/isolation & purification , COVID-19/transmission , Colony Count, Microbial , Hot Temperature , Humans , Prospective Studies , Time Factors , Ultraviolet Rays
4.
PLoS One ; 16(1): e0243554, 2021.
Article in English | MEDLINE | ID: covidwho-1067394

ABSTRACT

With COVID-19 N95 shortages, frontline medical personnel are forced to reuse this disposable-but sophisticated-multilayer respirator. Widely used to decontaminate nonporous surfaces, UV-C light has demonstrated germicidal efficacy on porous, non-planar N95 respirators when all surfaces receive ≥1.0 J/cm2 dose. Of utmost importance across disciplines, translation of empirical evidence to implementation relies upon UV-C measurements frequently confounded by radiometer complexities. To enable rigorous on-respirator measurements, we introduce a photochromic indicator dose quantification technique for: (1) UV-C treatment design and (2) in-process UV-C dose validation. While addressing outstanding indicator limitations of qualitative readout and insufficient dynamic range, our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%) required for UV-C dose measurements. In a measurement infeasible with radiometers, we observe a striking ~20× dose variation over N95s within one decontamination system. Furthermore, we adapt consumer electronics for accessible quantitative readout and use optical attenuators to extend indicator dynamic range >10× to quantify doses relevant for N95 decontamination. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical considerations for both photochromic indicators themselves and UV-C decontamination processes.


Subject(s)
Decontamination/methods , N95 Respirators/microbiology , Respiratory Protective Devices/microbiology , COVID-19/prevention & control , Dose-Response Relationship, Radiation , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Equipment Reuse/statistics & numerical data , Humans , Indicators and Reagents/radiation effects , Radiometry/methods , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Ultraviolet Rays , Ventilators, Mechanical/microbiology
5.
Infect Control Hosp Epidemiol ; 42(6): 678-687, 2021 06.
Article in English | MEDLINE | ID: covidwho-932192

ABSTRACT

BACKGROUND: Critical shortages of personal protective equipment, especially N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic continues to be a source of concern. Novel methods of N95 filtering face-piece respirator decontamination that can be scaled-up for in-hospital use can help address this concern and keep healthcare workers (HCWs) safe. METHODS: A multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as ≥6 log10 reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency. PAA and hydrogen peroxide off-gassing from treated masks were also assessed. RESULTS: The PAA room HLDS was effective for disinfection of bacteriophage MS2 and G. stearothermophilus spores on respirators in a 2,447 cubic-foot (69.6 cubic-meter) room with an aerosol deployment time of 16 minutes and a dwell time of 32 minutes. The total cycle time was 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA and hydrogen peroxide from the treated masks at 20 and 60 minutes after the disinfection cycle, respectively. CONCLUSION: The PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators during the COVID-19 pandemic.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Disinfectants/therapeutic use , Equipment Contamination/prevention & control , N95 Respirators/virology , Peracetic Acid/therapeutic use , SARS-CoV-2 , Aerosols , Cross Infection/prevention & control , Cross Infection/virology , Disinfectants/administration & dosage , Geobacillus stearothermophilus , Humans , Hydrogen Peroxide/administration & dosage , Hydrogen Peroxide/therapeutic use , Levivirus , N95 Respirators/adverse effects , N95 Respirators/microbiology , Peracetic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL